Title (Teoria i metody optymalizacji)	Code 1010332111010330807
Field	Year / Semester
Control Engineering and Robotics	1/1
Specialty	Course
•	core
Hours	Number of credits
Lectures: 4 Classes: 2 Laboratory: - Projects / seminars: -	7
	Language
	polish

Lecturer:

Dariusz Horla, Ph.D., +48 61 665 23 67, e-mail: Dariusz.Horla@put.poznan.pl, Institute of Control and Information Engineering, 60-965 Poznań, ul. Piotrowo 3a, tel. +48 61 665 23 65, fax +48 61 665 25 63

Faculty:

Faculty of Electrical Engineering ul. Piotrowo 3A 60-965 Poznań tel. (061) 665-2539, fax. (061) 665-2548 e-mail: office_deef@put.poznan.pl

Status of the course in the study program:

Obligatory course, Faculty of Electrical Engineering, Field: Automation and Robotics, Full time undergraduate studies.

Assumptions and objectives of the course:

The study of optimisation methods and their applications in control.

Contents of the course (course description):

Linear programming - graphical approach. Simplex tableu and matrix form method. Duality in linear programming. Linear programming in discrete sets. Implementation of simplex method. Sensitivity analysis of simplex method. Unconstrained nonlinear programming. Equality- and inequality-constrained nonlinear programming. Convex optimisation. Lagrange dual problem. Iterative methods of minimisation. Interior-point methods in linear and quadratic programming. Variational calculus. Pomtriagin minimum principle. Bellman equation. Linear matrix inequalities. Multicriteria programming. Penalty function methods. Genetic programming. Solving nonlinear simultaneous equations. Interior-point methods in nonlinear programming. Nonlinear programming in discrete sets. Geometric programming. Linear complementary problem.

Introductory courses and the required pre-knowledge:

Mathematical analysis, matrix algebra, differential equations, integral calculus, control theory.

Courses form and teaching methods:

Lectures supported by multimedia presentations, exercises.

Form and terms of complete the course - requirements and assessment methods:

Test exam at the end of semester (lecture), verification of knowledge during exercises.

Basic Bibliography:

Additional Bibliography: